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We show that the inevitability of realizing bifurcations connected with a dou- 
ble (and triple) limit cycle or with a separatrix loop can, in some cases, be 
detected from the global evaluation of trajectory behavior under parameter 
variations by reckoning the sign of the saddle term, and we turn our attention 

to new possibilities of tracing the bifurcations arising from the use of a mono- 
tonic field rotation. The methods of blf~~tion theory El] are widely used in 

problems of mechanics. However, in the general case, the problem of investi- 

gating all possible bifurcations is difficult and regular methods for solving it 
do not exist. There are no criteria locally connected with the points of the 

phase spaae or of the parameter space, which stipulate the actual realizability 
in a concrete dynamic system of bif~cations connected with a separatrix loop. 
A similar situation exists for bifurcations connected with the arising of limit 
CJGI~S from the condensation of trajectories, because we usually know neither 

the equations of the limit cycle nor the parameter values under which it arises. 
In a number of the methods used in bifurcation theory an important role is 
played by the local rotation of the field in a neighborhood of the singular tra- 

jectories of the system Cl, 21. In a number of cases the carryingoverofthis idea 
to the whole phase space and to the parameter space in the large (realizable 

in the presence of specific singularities of the system being investigated) per- 
mits us not only to trace all bifurcations possible in the system but also to pre- 

determine the disposition of the bifurcation curves or surfaces. 

1. We examine the system, considered in p] by the small parameter method (the 
phase space is a cylinder) 

Fp’=y, y’=p-sincp-hy-2u.s a+ (1.1) 

By the known methods of qualitative theory we can detect that there are two equilibri- 

um states on the axis y =11 0 for all values of the parameters a > 0, s> 0, h > 0, 
0 < fi < 1 : 0, (arc sin p, 0) ,a stable node or focusand #a (n - arc sin fi, 0), 
a saddle. On the lower half-blinds the trajectories go from infinity onto the upper 
half-cylinder. There are no cycles [4, 51 on the lower half-cylinder and around the point 
o1 . All bifurcations can occur only on the upper half-cylinder. 

For large h the structure of the phase space partitioning is uniquely determined in 
comparison with the system 

9’ = y, 9’ = p - sin cp - 2Xy c-L21 

As is known [4, 61, for each fi ((1 < p < .l) there exists :-:* i$‘i such that when % > 
X* the o -separatrix of the saddle of system (1.2), going onto the upper half-cylinder, 
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does not intersect y = 0 and goes to infinity on the upper half-cylinder. If a > 2X, 
the direction field of (1.1) turns clockwise relative to the direction field of (1.2). There- 
fore, if x > X* and h > 2x, the o-separatrix of the saddle of system (1.1) alsoshould 
go to infinity. There are no cycles. The phase space partitioning structure is equivalent 

to that shown in Fig. l(0). 
Let us observe the variation of the qualitative structure and the possible bifurcations 

for fixed p (0 < fl < 1) and s > 0 in the ah parameter plane. The qualitative 

structure does not depend upon the p and ,P chosen. The qualitative structaes realized 

along the straight line h = 0 are known [5]. There exist a, and a, such that a parti- 
tioning structure without limit cycles is realized on a piece 0 < a < a, (f3, s) of the 

a -axis. A structure with two limit cycles (a stable lower one and an unstable upper one) 
is realized in the upper half-cylinder on the piece a,@, s) < a < a2 (@, s) . A struc- 
ture with one unstable limit cycle is realized on the piece cz2 (p, s) < a < cu . A 
structure with a double limit cycle arising from a condensation of trajectories corres- 

ponds to the point a = a, (fi, s) . A structure with a separatrix loop covering the 
upper half-cylinder corresponds to the point a = cz2 (p, s). 

Let us observe the changes in the qualitative structures and in the possible bifmcations 
as a increases along the straight lines n = a,. We examine three cases. 

lo. a,, > a2. As h increases from the value h = 0 , the term - jUy appears in 
the equation and the point at infinity becomes unstable. Stable limit cycle emerges 

from infinity. This structure is shown on Fig. l(2). There are two limit cycles on the 
upper half-cylinder. As ?L inaeases the direction field rotates clockwise and the limit 

cycles come together monotonically (the stable one drops and the unstable one rises). 

Since the partitioning structure shown in Fig. l(0) (no cycles now) is automatically rea- 
lized when ?L > X* , there exists h = ?L++ (a; p, s) for which the limit cycles merge, 
forming a double semistable limit cycle. As h increases from the bifurcation value a++ 

the double limit cycle disappears. 

2”. al < a0 < a2. As h increases from the value a = 0 , a third (stable) limit 
cycle emerges from infinity. This structure is shown on Fig. l(3). As a increases the 

upper and lower stable limit cycles drop monotonically, while the unstable one located 
between them rises monotonically. Since for h > x* cycles are absent and with increa- 
sing 31, the field turns monotonically in a clockwise direction, there exist a = a++ (a; 

p, s), which corresponds to the merging of the unstable limit cycle with the stable upper 
one and, also, 3L = ho (a; fi, s), which corresponds to the confluence of the lower sta- 
ble cycle with the separatrix loop at the upper half-cyclinder (a loop can only arise as 

the result of contraction of a stable limit cycle into a loop, since the saddle quantity 

(P,’ + Qv’) = -(2als + a) is negative cl, 21). 

3’. 0 < a, < a,. As h increases from the value 3\. = 0 , a stable limit cycle 
emerges from infinity, which drops monotonically with increasing 3, . Since for a > X* 

cycles are absent and the saddle quantity is negative, there exists 3L = h, (a; p, s) 
which corresponds to the loop of the saddle separatrix at the upper half-cylinder. For 
h .= h, the stable limit cycle merges with the loop of the separatrix. If the monotonic 
rotation of the field does not everywhere increases the pitch (the distance between coils) 

of the spiral covering the cylinder, then the further possibility remains of a double 
limit cycle arising from the condensation of trajectories with a subsequent separation 
of the double limit cycle into simple ones - a stable and an unstable. Such a possibi- 
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lity is realized as ?L increases along the straight line a = a, < a, if a, is suffici- 
ently close to al. 

A phase space partitioning structure withadouble semistable limit cycle on the upper 
half-cylinder corresponds to the point a = 0, a = a, . Since the direction field rota- 

tes in opposite senses as ?L increases and as u decreases (clockwise and counter-clock- 
wise,respectively), the limit cycle separates into two as J, increases and vanishes as a 

decreases. Considerations of continuity imply that in the ah-plane a bifurcational curve 

h = h+ (a; fi, S) emerges from point li. = 0, a = CX, with a negative slope, whose 
binary cycle does not collapse. The straight line a = a, < a, intersects this curve 
if Uois sufficiently close to a,. 

Let us observe the variation of the qualitative structures as ?L increases along the 
straight line a = a, < a, when a, is sufficiently close to al. The structure of Fig. 
l(0) is realized when h = 0 , There are no cycles. As we pass to positive a a stable 
limit cycle emerges from infinity, which drops as h increases. For the value ?L = h+ 

(a,; p, S) a double limit cycle appears below the stable limit cycle (the double limit 
cycle cannot arise above the stable limit cycle which emerged from infinity because 

above the cycle the pitch of the spiral winding onto the stable cycle from above can 
only increase as the field rotates clockwise). With a further increase of h the double 
limit cycle separates into a lower stable one and an upper unstable one, and the parti- 

tioning structure of Fig. l(3) is realized. Under an additional increase in k the stable 
cycle drops and the unstable one rises. Since there are no cycles for h > x* , two more 
bifurcations are necessarily realized in the interval a+ < a < x* : the fusion of the 

stable and the unstable limit cycles on the bifurcation curve h = a++ (a,; 0, s) 
and the arising of a separatrix loop on the bifurcation curve a = a, (a,; p, s) as the 
stable (since the saddle term is negative) limit cycle contracts to it with increase 

in a. 
2, We trace the disposition of the bifurcation curves in the &-plane. The bifurca- 

tion curve a = a++(a; p, ) s exists for all values a > ai and for values a < a, 
sufficiently close to czi. The curve h = h++ (a; p, s) has a negative slope. The 

latter follows from the fact that on a curve with a positive slope the vector field rotates 
monotonically under a simultaneous increase or decrease of the parameters Q and h, 
and a double limit cycle could not exist in such case, The bifurcation curve 51= a+ 

(a; /3, s) starts at the point 3\ = 0, a = a,, exists in a certain neighborhood of this 
point to the left, and, for the same reason as for the curve a++, has a negative slope. 

The curve P,’ + Q1/’ = 0 does not have real branches in the phase space if a < 
4sh. Therefore, for the condition a < 4~2, there cannot be more than one cycle gird- 
ing the phase cylinder fl]. This circumstance helps us trace the behavior of the curves 
?P and a++. As a decreases the curves A+ and a++ can go neither to infinity (since 
they cannot intersect the straight line h = x*) nor to the h-axis (since they cannot 
intersect the straight line a = &a) nor to the a-axis (since they have negativeslopes). 
As a decreases the curves a+ and a++ can end up only at the corner point correspond- 
ing to the joining of the bifurcation curves a+ and h”. The system has a triple limit 
cycle for values of the parameters corresponding to this corner point. 

The bifurcation curve a = a0 (a; 0, s) exists on the interval 0 < a < a2. 
Any straight line a -- a, (0 < a, < a,& or h = h, (0 < hi <‘x*) intersects it 
only once because the direction field turns monotonically as a or a increase.It passes 
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through the point a = 0, h = X* (by definition of X* [4, 61) and through the point 
a= a2, h = 0 (by definition of a2 [5]). For the same reason as for the curves h+ and 
h ++ the ewe h,, has a negative slope. 

Note. Structures on the straight line h = 0 are known only to within an additional 
even number of cycles girding the cylinder [5]; therefore, there remains the inevitable 

logical possibility of the existence of “doubles” of bifurcation curves A+ and A++. 

Let us ascertain the disposition of curve a,, relative to curves h+ and A++, assuming 
the absence of “doubles”. If,with increasing h , a separatrix loop arises around the cy- 
linder and then collapses before the appearance of a double limit cycle, then the phase 
space partitions into trajectories without limit cycles ; the o-separatrix of the saddle 

winds around the upper half-cylinder, going to infinity. For a subsequent increase in h 
limit cycles can no longer arise because the field rotates clockwise and the spiral’s pitch 
on the upper half-cylinder increases. No part of ewe &, can be located below curve 

h+. Therefore, ewes ho and h+ cannot intersect. The curve ?,,, also cannot pass through 
the corner point of the joining of ewes h+ and h ++. To such a point’ there must corre- 
spond a phase space partitioning structure with a triple stable limit cycle and a simple stable 

separatrix loop on the upper half-cylinder (the saddle term is nonzero and is negative). 
The presence of these elements in the phase space partitioning structure is possible only 

when there exists an unstable limit cycle separating them. The assumption of the possi- 
bility of such a structure at the corner point leads to a contradiction with the assumption 

that this is a corner point (the rotation of the field as a decreases can transfer such a 
structure into a structure with one limit cycle, which realizes to the left of the straight 
line a = &?I, by a passage through the bifurcation ewe h+, but this is impossible if 

the initial point is a corner point). 
The ewe h, intersects A+’ to the right of the corner point. The partitioning of the 

parameter space for p = corrst (0 .< p < 1) an s - consI. is shown in Fig. 3. The d 
digits 0 - 3 mark regions in the parameter space, corresponding to the structurally 
stable spaces in Fig. 1 marked by those same digits. The digits indicate the number of 

cycles. The bifurcation curves in Fig. 3, separating the corresponding regions, correspond 
to the structurally unstable spaces in Fig. 2, marked by two or four digits. The signs 

+ and + + in Fig. 2 indicate, respectively, the belonging to the bifurcation curves A+ 
and A++. The limit cycle in Fig. 2(1 - 3)+‘++ is a threefold one. 
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We consider the problem of the existence and the stability in-the-small of 
periodic solutions of systems of ordinary differential equations with a small 
parameter P, which in the generating approximation (P= 0) admit of a family 
of quasi-periodic solutions (we are concerned only with the solutions belonging 
to the indicated family when P = 0 ). The case to be investigated is in a spe- 

cific sense a more general case of the unisolated generating solution in the 

small parameter theory and, therefore, includes everything previously treated 
by Malkin [l], Blekhman [2], and others. The main difficulty in the investiga- 
tion is the presence of a multiple zero root in the characteristic determinant 

of the problem’s generating system, to which both simple as well as quadratic 
elementary divisors [3] correspond. This fact predestines the presence of three 
groups of stability criteria for the solution being examined. The method for 
constructing these criteria, proposed here, assumes, in contrast to a previous one 

Cl], the preliminary determination of not only the generating approximation 
but also the first one to the desired periodic solution. Particular aspects of the 

general “mixed” problem treated here were studied earlier in [4, 53. 

1. Bxfrtence of a periodic solution. At present relatively general integra- 
bility tests and integration methods for systems of high-order nonlinear differential equa- 
tions have been worked out only for autonomous canonical systems [6]. The successive 
use of these methods leads, in the case of a sign-definite Hamiltonian function, to the 
determination of a general quasi-periodic integral. The conjugate canonic variables 
of the problem are here expressed as %a-periodic functions of the quantities 

?p8 = v,t + a, (1.1) 

and also of the mutually independent integration constants h, (a = 1, Z,...). Naturally, 

the total number of quantities qs, h, equals the order of the original system. If the 
quantities a, are integration constants, also independent of each other and of h, (and 
we assume this is so in what follows), then the quantities & acquire the nature of par- 

tial rapidly-rotating phases and, moreover, the partial frequencies v, depend, as does 


